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The free vibration analysis of functionally graded (FG) thick annular plates subjected to

thermal environment is studied based on the 3D elasticity theory. The material

properties are assumed to be temperature dependent and graded in the thickness

direction. Considering the thermal environment effects and using Hamilton’s principle,

considered accurately by obtaining them from the 3D thermoelastic equilibrium

equations. The differential quadrature method (DQM) as an efficient and accurate

numerical tool is used to solve both the thermoelastic equilibrium and free vibration

equations. Very fast rate of convergence of the method is demonstrated. Also, the

formulation is validated by comparing the results with those obtained based on the

first-order shear deformation theory and also with those available in the literature for

the limit cases, i.e. annular plates without thermal effects. The effects of temperature

rise, material and geometrical parameters on the natural frequencies are investigated.

The new results can be used as benchmark solutions for future researches.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are special composite whose thermo-mechanical properties have smooth and
continuous spatial variation due to a continuous change in composition, in morphology, in microstructure, or in crystal
structure. FGMs posses various advantages over the conventional composite laminates, such as smaller thermal stresses,
stress concentrations, attenuation of stress waves, etc. Therefore, FGMs have received wide applications as structural
components in modern industries such as mechanical, aerospace, nuclear, reactors, and civil engineering.

The structural elements made of FGMs work often in thermal environment with high temperature which induce large
thermoelastic stresses and consequently change the mechanical behavior of these materials. Hence, the study of vibration
characteristic of these types of material under thermal conditions is of great interest for engineering design and manufacture.

Compared with the free vibration analysis of FG beams and rectangular plates (see for example [1–12]), the studies
concerned with the free vibration of FG circular and annular plates is very limited in number and are discussed briefly here.
Eraslan and Akis [13] obtained the closed-form solution for functionally graded rotating solid shaft and rotating solid disk
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under generalized plane strain and plane stress assumptions, respectively. Prakash and Ganapathi [14] analyzed the
asymmetric flexural vibration and thermoelastic stability of FGMs circular plates based on the first-order shear
deformation theory (FSDT) using the finite element method. Efraim and Eisenberger [15] presented the vibration analysis
of annular plates with variable thickness made of isotropic material and FGMs by the exact element method. They used the
FSDT to formulate the problem. Nie and Zhong [16] investigated the three-dimensional vibration of functionally graded
circular plates using a semi-analytical method based on the state space method and DQM. They used the state space
method and the DQM to discretize the equations of motion in the thickness and the radial directions, respectively. Dong
[17] studied the three-dimensional free vibration of functionally graded circular and annular plates using the
Chebyshev–Ritz method. Recently, Zhao et al. [18] presented a free vibration analysis of functionally graded plates using
the element-free kp-Ritz method and based on the first-order shear deformation plate theory. But the circular and annular
plates were not investigated. Also, in these works only the mechanical vibrations were investigated carefully and the effects
of initial stresses due to thermal environment were not considered. Kumar et al. [19] carried out the acoustic response of
the functionally graded material elliptic disc. Displacement, velocity, acceleration, radiated sound pressure, radiated sound
power level and radiation efficiency of the elliptic disc were examined over a range of varying frequencies.

The differential quadrature method (DQM) is found to be a simple and efficient numerical technique for structural
analysis [2,12,18–21]. Better convergence behavior is observed by DQM compared with its peer numerical competent
techniques viz. the finite element method, the finite difference method, the boundary element method and the meshless
technique.

To the authors’ best knowledge, in the previous works only the mechanical vibrations of FG circular and annular plates
are investigated and the effects of thermal environment are not considered. Hence, in this paper the three-dimensional free
vibration of FG circular and annular plates with arbitrary boundary conditions and under thermal environment are studied.
The material properties are assumed to be temperature dependent and graded in the thickness direction, which can vary
according to power law distributions in terms of the volume fractions of the constituents, exponentially or any other
formulations in this direction. The initial thermal stresses in the plate due to the temperature rise are accurately
determined by solving the three-dimensional thermoelastic equilibrium equations. Both the thermoelastic equilibrium
equations as well as the equations of motion, subjected to the related boundary conditions, are solved by using the
differential quadrature method (DQM) [2,12,20–23]. Specially using the DQM along the graded direction enables one to
accurately and efficiently discretize the variable coefficient partial differential equations in this direction and implement
the boundary conditions in their strong forms. The accuracy and convergence of the present method are demonstrated
through numerical results. Finally, parametric study is carried out to highlight the influences of uniform and non-uniform
temperature rise, boundary conditions, dependence of material properties on temperature and material property graded
indexes on the vibration frequencies of FG thick annular plates in thermal environment.
2. Governing equations

Consider a thick FG annular plate as shown in Fig. 1. A cylindrical coordinate system (r, y, z) is used to label the material
point of the plate in the unstressed reference configuration. The displacement components of an arbitrary material point of
the plate are denoted as u, v and w in the r, y and z-directions, respectively.
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Fig. 1. Geometry and coordinate system of the FG annular plates.
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2.1. FGMs relations

The material properties of the plate are assumed to vary continuously through the thickness of the plate, i.e. in the z-
direction. The material properties are assumed to vary according to power law distribution in terms of the volume fractions
of the constituents or exponentially through the thickness. In the first case, the material composition continuously varies
such that the surface z=h is ceramic-rich, whereas the surface z=0 is metal-rich. Based on the power law distribution, a
typical effective material property ‘P’ of the FG plate is obtained as [11]

Pðz; TÞ ¼ PmðTÞ þ ½PcðTÞ � PmðTÞ�
z

h

� �p

; (1)

where subscripts m and c refer to the metal and ceramic constituents, respectively; p is the power law index or the material
property graded index; h is the thickness of plate; and T [=T(z)] is the temperature (in Kelvin) at an arbitrary material point
of the plate.

In the second case, it is assumed that the material properties have the following exponential distributions in the
thickness direction of the plates:

Pðz; TÞ ¼ PmðTÞe
gðz=hÞ; (2)

where g is the material property graded index.
For FG plate constituents, i.e. ceramic and metal, the material properties are temperature dependent and a typical

property ‘Q’ of them can be expressed as a function of temperature as [11]

Q ðTÞ ¼ Q0ðQ�1T�1 þ 1þ Q1T þ Q2T2 þ Q3T3Þ: (3)

The coefficients Qi (i=�1, 0, 1, 2) are unique to the constituent materials.
The three-dimensional constitutive relations for a linear elastic orthotropic FG plate including the thermal effects can be

written as

ŝrr

ŝyy
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2êzy
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2êry

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; (4)

where ŝ ij and êij ði; j ¼ r; y; zÞ are the components of stress and strain tensor components, respectively; Cij ½¼ Cijðz; TÞ; i; j ¼

1;2;3� are the material elastic coefficients; aiðz; TÞ are the thermal expansion coefficients; DT ð¼ T � T0Þ is the temperature
rise and T0 is the reference temperature at which the plate is stress free. The material elastic coefficients Cij ½¼ Cijðz; TÞ� for
an isotropic plate are related to the elastic material properties as follows:

C11 ¼ C22 ¼ C33 ¼
ð1� nÞE

ð1þ nÞð1� 2nÞ ;C12 ¼ C23 ¼ C13 ¼
nE

ð1þ nÞð1� 2nÞ ;C44 ¼ C55 ¼ C66 ¼
E

2ð1þ nÞ ; (5a2i)

where E [=E(z, T)]E and n ½¼ nðz; TÞ� are Young’s modulus and Poisson’s ratio, respectively.

2.2. Thermoelastic equilibrium

In this section, the thermoelastic equilibrium equations based on the three-dimensional elasticity theory for the initial
thermal stress evaluation are presented. It is assumed that the plate is stress free at the temperature T0. Then, if the FG
plate operates in a thermal environment, non-uniform temperature rise or uniform temperature rise together with
mechanical constraints at its boundaries causes some thermal stresses in it. These stresses affect the vibration
characteristic of the plate. In this study, it is assumed that the temperature rise is uniform or varies across the thickness of
the plate and no heat generation source exists within the plate. Hence, the temperature distribution along the thickness
direction can be obtained by solving the following steady-state one-dimensional heat transfer equation through the
thickness of the plate:

KðzÞ
d2T

dz2
þ

dKðzÞ

dz

dT

dz
¼ 0; (6)

where K is the thermal conductivity of the plate. Different thermal boundary conditions can be considered at the top and
the bottom surfaces of the plate. Usually, the prescribed temperature at the top and bottom surfaces of FG beams and plates
were considered as the thermal boundary conditions in the literature. Hence, for brevity purpose and without loss of
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generality, here these type of the boundary conditions are considered, which for plate problem become

T ¼ Tm at z ¼ 0 and T ¼ Tc at z ¼ h: (7a, b)

For the case of power law distribution, the solution of Eq. (6) subjected to the boundary conditions (7) can be obtained
by means of polynomial series solutions. The result is

TðzÞ ¼ Tm þ
DT

C

2zþ h

2h

� �
�

Kcm

ðpþ 1ÞKm

2zþ h

2h

� �pþ1

þ
K2

cm

ð2pþ 1ÞK2
m

2zþ h

2h

� �2pþ1

�
K3

cm

ð3pþ 1ÞK3
m

2zþ h

2h

� �3pþ1
"

þ
K4

cm

ð4pþ 1ÞK4
m

2zþ h

2h

� �4pþ1

�
K5

cm

ð5pþ 1ÞK5
m

2zþ h

2h

� �5pþ1
#
; (8)

where Kcm ¼ Kc � Km and

C ¼ 1�
Kcm

ðpþ 1ÞKm
þ

K2
cm

ð2pþ 1ÞK2
m

�
K3

cm

ð3pþ 1ÞK3
m

þ
K4

cm

ð4pþ 1ÞK4
m

�
K5

cm

ð5pþ 1ÞK5
m

:

Also, for the plates with the exponential distribution of the material properties, the temperature distribution can be
easily obtained directly from Eq. (6).

Due to axisymmetric thermal loading, the thermoelastic equilibrium equations in terms of displacement components
for a linear elastic FG plate with infinitesimal deformations become du:

C11
q2u0

qr2
þ

C11

r

� �
qu0

qr
�

C11

r2

� �
u0 þ C44

0 qu0

qz
þ C44

q2u0

qz2
þ ðC12 þ C44Þ

q2w0

qr qz
þ C44

0 qw0

qr
¼ 0; (9)

dw:

ðC12 þ C44Þ
q2u0

qzqr
þ C12

0 qu0

qr
þ

C12 þ C44

r

� �
qu0

qz
þ

C12
0

r

� �
u0 þ C44

q2w0

qr2
þ

C44

r

� �
qw0

qr
þ C11

q2w0

qz2
þ C11

0 qw0

qz

¼ ðC12
0 þ C12

0 þ C11
0 ÞaDT þ ð2C12 þ C11Þa

qðDTÞ

qz
; (10)

where Cij
0 ¼ dCij=dz; u0 and w0 are the displacements of an arbitrary material point along the r- and z-directions,

respectively. Hereafter, a subscript ‘0’ is used to represent the variables of the deformation field and the stress components
in the equilibrium state of the plate in the thermal environment.

The related boundary conditions are as follows:
At the surfaces z=0, h:

s0zr ¼ C44
qu0

qz
þ

qw0

qr

� �
¼ 0;s0zz ¼ C12

qu0

qr
þ

u0

r

� �
þ C11

qw0

qz
� ðC11 þ 2C12Þa1DT ¼ 0: (11a, b)

At the surfaces r=Ri and Ro:

either u0 ¼ 0 or s0rr ¼ C11
qu0

qr
þ C12

u0

r
þ

qw0

qz

� �
� ðC11 þ 2C12Þa1DT ¼ 0; (12a, b)

either w0 ¼ 0 or s0rz ¼ C44
qu0

qz
þ

qw0

qr

� �
¼ 0: (13a, b)

Different types of classical boundary conditions at the edges of the plate can be obtained by combining the condition
stated in Eqs. (11)–(13). For example, at the edges r=Ri and Ro one has

simply supported ðSÞ : w0 ¼ 0;s0rr ¼ C11
qu0

qr
þ C12

u0

r
þ

qw0

qz

� �
� ðC11 þ 2C12Þa1DT ¼ 0; (14a, b)

clamped ðCÞ : u0 ¼ 0;w0 ¼ 0; (15a, b)

free ðFÞ : s0rr ¼ C11
qu0

qr
þ C12

u0

r
þ

qw0

qz

� �
� ðC11 þ 2C12Þa1DT ¼ 0;s0rz ¼ C44

qu0

qz
þ

qw0

qr

� �
¼ 0: (16a, b)

2.3. Vibration analysis

To study the free vibration characteristic of the plate in the thermal environment, the displacement components of an
arbitrary material point (r, y, z) are perturbed around its equilibrium position in thermal environment. Hence, the total
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displacement components measured from the plate undeformed configurations become

ûðr; y; z; tÞ ¼ u0ðr; zÞ þ uðr; y; z; tÞ; v̂ðr;y; z; tÞ ¼ v0ðr; zÞ þ vðr;y; z; tÞ ¼ vðr; y; z; tÞ;ŵðr; y; z; tÞ
¼ w0ðr; zÞ þwðr; y; z; tÞ; (17a2c)

where û, v̂ and ŵ are the total displacement components along the r-, y- and z-directions, respectively.
The free vibration equations of motion with the related boundary conditions can be obtained by using Hamilton’s

principle, which has the following form: Z t2

t1

ðdK � dUÞdt ¼ 0; (18)

where K and U are the kinetic and the potential energy of the plate; t1 and t2 are two arbitrary values of time. The virtual
work of the internal forces, including the initial thermal stresses, can be obtained from the variation of the plate elastic
potential energy, which is

dU ¼

Z Ro

Ri

Z 2p

0

Z h=2

�h=2
½ðsrr þ s0rrÞdêrr þ ðsyy þ s0yyÞdêyy þ ðszz þ s0rzÞdêzz þ 2ðsrz þ s0rzÞdêrz þ 2srydêry

þ 2syzdêyz�r dydr dz; (19)

where sij ði; j ¼ r; y; zÞ are that parts of the total stress tensor ŝ ij which are due to vibratory motion.
To include the effects of the initial thermal stresses in the equations of motion, the nonlinear terms in the

strain–displacement relations of vibration should be considered:

êrr ¼
qû

qr
þ

1

2

qû

qr

� �2

þ
qv̂

qr

� �2

þ
qŵ

qr
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" #

; (20a)
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r
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1
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qû
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; (20b)

2êry ¼
qv̂

qr
þ

1

r

qû

qy
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� �
þ

1

r

qû
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qû
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� �
þ
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qr
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qy
þ û
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qv̂
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þ

qŵ
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qŵ
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� �
; (20c)

2êyz ¼
qv̂

qz
þ

1

r

qŵ

qy
þ

1

r

qû

qz

qû

qy
� v̂

� �
þ

qv̂

qz

qv̂

qy
þ û

� �
þ
qŵ

qy
qŵ

qz

� �
; (20d)

2êrz ¼
qŵ

qr
þ
qû

qz
þ

qû

qr

qû

qz
þ

qv̂

qr

qv̂

qz
þ
qŵ

qr

qŵ

qz
: (20e)

The variational form of the plate kinetic energy is obtained from the following equation:

dK ¼

Z h=2

�h=2

Z y0

0

Z Ro

Ri

r qu

qt

qdu

qt
þ

qv

qt

qdv

qt
þ

qw

qt

qdw

qt

� �
r dr dydz; (21)

where r½¼ rðz; TÞ� is the mass density of the FG plate.
Inserting Eqs. (17) and (19)–(21) into Eq. (18) and performing the integration by parts with respect to the spatial

coordinate variables r, y and temporal variable t, and also using the thermal equilibrium Eqs. (9) and (10), one obtains the
equations of motion together with the related boundary conditions for small amplitude free vibration as follows:

du:

ðs0rr þ C11Þ
q2u

qr2
þ

C11 þ s0yy

r

� �
qu

qr
þ

s0yy þ C44

r2

� �
q2u

qy2
þ ðC44 þ s0zzÞ

q2u

qz2
þ 2s0rz

q2u

qr qz
þ C44

0 qu

qz
�

s0yy þ C11

r2

� �
u

�
2s0yy þ C11 þ C44

r2

� �
qv

qy
þ

C44 þ C12

r

� �
q2v

qr qy
þ ðC44 þ C12Þ

q2w

qr qz
þ C44

0 qw

qr

¼ r q2u

qt2
; (22)

dv:

2s0yy þ C11 þ C44

r2

� �
qu

qy
þ

C12 þ C44

r

� �
q2u

qr qy
þ ðs0rr þ C44Þ

q2v

qr2
þ

s0yy þ C44

r

� �
qv

qr
þ

s0yy þ C11

r2

� �
q2v
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þ ðs0zz þ C44Þ
q2v

qz2
þ 2s0rz

q2v

qr qz
þ C44

0 qv

qz
�
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r2

� �
vþ
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r

� �
q2w

qz qy
þ

C44
0

r

� �
qw

qy

¼ r q2v

qt2
; (23)
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dw:

C12
0 qu

qr
þ ðC12 þ C44Þ

q2u

qz qr
þ

C12 þ C44

r

� �
qu

qz
þ

C12
0

r

� �
uþ

C12 þ C44

r

� �
q2v

qz qy
þ

C12
0

r

� �
qv

qy
þ ðs0rr þ C44Þ

q2w

qr2

þ
s0yy þ C44

r

� �
qw

qr
þ

s0yy þ C44

r2

� �
q2w

qy2
þ ðs0zz þ C11Þ

q2w

qz2
þ 2s0rz

q2w

qr qz
þ C11

0 qw

qz

¼ r q2w

qt2
: (24)

The related boundary conditions become
At the surfaces r ¼ Ri and Ro:

either du ¼ 0 or ðs0rr þ C11Þ
qu

qr
þ s0rz

qu

qz
þ

C12

r

� �
uþ

C12

r

� �
qv

qy
þ C12

qw

qz
¼ 0; (25a, b)

either dv ¼ 0 or
C44

r

� �
qu

qy
� v

� �
þ ðs0rr þ C44Þ

qv

qr
þ s0rz

qv

qz
¼ 0; (26a, b)

either dw ¼ 0 or C44
qu

qz
þ ðs0rr þ C44Þ

qw

qr
þ s0rz

qw

qz
¼ 0: (27a, b)

At the surfaces z ¼ 0 and h:

either du ¼ 0 or ðs0zz þ C44Þ
qu

qz
þ s0rz

qu

qr
þ C44

qw

qr
¼ 0; (28a, b)

either dv ¼ 0 or
C44

r

� �
qw

qy
þ ðs0zz þ C44Þ

qv

qz
þ s0rz

qv

qr
¼ 0; (29a, b)

either dw ¼ 0 or C12
qu

qr
þ

C12

r

� �
uþ

C12

r

� �
qv

qy
þ s0rz

qw

qr
þ ðC11 þ s0zzÞ

qw

qz
¼ 0: (30a, b)

3. Solution procedure

It is difficult to analytically solve the equations of motion, if it is not impossible. Hence, one should use an approximate
method to find a solution. Here, the differential quadrature method (DQM) is employed. The basic idea of the differential
quadrature method is that the derivative of a function, with respect to a space variable at a given sampling point, is
approximated as a weighted linear sum of the sampling points in the domain of that variable. In order to illustrate the DQ
approximation, consider a function f ðx;ZÞ having its field on a rectangular domain 0rxra and 0rZrb: Let, in the given
domain, the function values be known or desired on a grid of sampling points. According to DQ method, the rth derivative
of the function f ðx;ZÞ can be approximated as

qrf ðx;ZÞ
qxr ðx;ZÞ¼ðxi ;ZjÞ

¼
XNx

m¼1

AxðrÞ
im f ðxm;ZjÞ ¼

XNx

m¼1

AxðrÞ
ij fmjfor i ¼ 1;2; . . . ;Nxandr ¼ 1;2; . . . ;Nx � 1

����� (31)

From this equation one can deduce that the important components of DQ approximations are the weighting coefficients
ðAxðrÞ

ij Þ and the choice of sampling points. In order to determine the weighting coefficients a set of test functions should be
used in Eq. (31). For polynomial basis functions DQ, a set of Lagrange polynomials are employed as the test functions. The
weighting coefficients for the first-order derivatives in xi-direction are thus determined as [20]

Ax
ij ¼

1

a

MðxiÞ

ðxi � xjÞMðxjÞ
for iaj

�
XNx

j ¼ 1

iaj

Ax
ij for i ¼ j ; i; j ¼ 1;2 . . . ;Nx;

8>>>>>>>><
>>>>>>>>:

(32)

where MðxiÞ ¼
QNx

j¼1;iajðxi � xjÞ.
The weighting coefficients of the second-order derivative can be obtained as [20]

½Bx
ij� ¼ ½A

x
ij�½A

x
ij� ¼ ½A

x
ij�

2: (33)

In a similar manner, the weighting coefficients for the Z-direction can be obtained.
A simple and natural choices of the grid distribution is the uniform grid spacing rule; however, it was found that non-

uniform grid spacing yields results with better accuracy. Hence, in this study, the Chebyshev–Gauss–Lobatto quadrature
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points are used, that is [20]

xi

a
¼

1

2
1� cos

ði� 1Þp
ðNx � 1Þ

� �	 

;
Zj

b
¼

1

2
1� cos

ðj� 1Þp
ðNZ � 1Þ

� �	 

for i ¼ 1;2; . . . ;Nx; j ¼ 1;2; . . . ;NZ: (34a, b)

Using the geometrical periodicity of the plate, the displacement components for the free vibration analysis can be
represented as

uðr;y; z; tÞ ¼ Umðr; zÞe
Iomt cos my; vðr; y; z; tÞ ¼ Vmðr; zÞe

Iomt sin my; wðr;y; z; tÞ ¼Wmðr; zÞe
Iomt cos my: (35a2c)

where m(=0,1,y,N) is the circumferential wavenumber; om is the natural frequency and Ið¼
ffiffiffiffiffiffiffi
�1
p
Þ is the imaginary

number. It is obvious that m=0 means axisymmetric vibration.
At this stage the DQ rules are employed to discretize the free vibration equations and the related boundary conditions.

Substituting for the displacement components from (35) and then using the DQ rules for the spatial derivatives, the
discretized form of the equations of motion at each domain grid point ðri; zjÞ with ði ¼ 2;3; . . . ;Nr � 1Þ and ðj ¼
2;3; . . . ;Nz � 1Þ can be obtained as

Eq. (22):
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mUmij ¼ 0; (36)

Eq. (23):
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Eq. (24):
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In a similar manner, at each boundary grid points, the boundary conditions can be discretized as follows:
Eq. (25):

either Umij ¼ 0 or ðs0rr þ C11Þij

XNr

n¼1

Ar
inUmnj þ

XNz

k¼1

Az
jk½ðs0rzÞijUmik þ ðC12ÞijWmik� þ ðC12Þij

Umij þmVmij

ri

� �
¼ 0; (39a, b)

Eq. (26):

either Vmij ¼ 0 or� ðC44Þij
mUmij þ Vmij

ri

� �
þ ðC44 þ s0rrÞij

XNr
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Eq. (27):
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XNz

k¼1

Az
jk½ðC44ÞijUmik þ ðs0rzÞijWmik� þ ðs0rr þ C44Þij

XNr

n¼1

Ar
inWmnj ¼ 0; (41a, b)

where i=1 and Nr at the surfaces r ¼ Ri and Ro, respectively.

Eq. (28):

either Umij ¼ 0 or ðs0zz þ C44Þij

XNz

k¼1

Az
jkUmik þ

XNr

n¼1

Ar
in½ðs0rzÞijUmnj þ ðC44ÞijWmnj� ¼ 0; (42a, b)

Eq. (29):

either Vmij ¼ 0 or �mðC44Þij
Wmij

ri

� �
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Az
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n¼1

Ar
inVmnj ¼ 0; (43a, b)

Eq. (30):
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XNr
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� �
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XNz
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Az
jkWmik ¼ 0: (44a, b)

where j=1 and Nz at the surfaces z ¼ 0 and h, respectively.
In order to carry out the eigenvalue analysis, the domain and boundary degrees of freedom should be separated. In

vector forms, they are denoted as d and b, respectively. Based on these definitions, the DQ discretized form of the equations
of motion and the related boundary conditions can be represented in the matrix form as

equations of motion:

Sdbbþ Sddd�o2
mMd ¼ 0; (45)

boundary conditions:

Sbbbþ Sbdd ¼ 0: (46)

The elements of the stiffness matrixes Sdi (i=b, d) and the mass matrix M are obtained from equations of motion and those
of the stiffness matrixes Sbi (i=b, d) are obtained from the boundary conditions.
Table 1
Temperature-dependent coefficients of material properties for ceramic (ZrO2) and metals (Ti-6Al-4V).

Material Q�1 Q0 Q1 Q2 Q3

E (GPa) Ti-6A1-4V 0 122.7 �4:605� 10�4 0 0

ZrO2 0 132.2 �3:805� 10�4
�6:127� 10�8 0

n Ti-6A1-4V 0 0.2888 1:108� 10�4 0 0

ZrO2 0 0.3330 0 0 0

r kg

m3

� �
Ti-6A1-4V 0 4420 0 0 0

ZrO2 0 3657 0 0 0

a (1/K) Ti-6A1-4V 0 7.43�10�6 7.483�10�4
�3.621�10�7 0

ZrO2 0 13.3�10�6
�1.421�10�3 9.549�10�7 0

K (W/mK) Ti-6A1-4V 0 6.10 0 0 0

ZrO2 0 1.78 0 0 0

Ref. [11].
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Table 3

Convergence and accuracy of the first seven non-dimensional natural frequency parameters $i½¼ omih
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðC44Þm

p
� of completely free FG annular plates.

Nr ¼ Nz m $1 $2 $3 $4 $5 $6 $7

7 0 2.464 4.548 10.984 12.648 14.803 15.560 17.135
9 2.462 4.548 10.923 12.608 14.792 15.542 17.141
13 2.461 4.548 10.914 12.605 14.792 15.542 17.141
19 2.461 4.548 10.913 12.605 14.792 15.543 17.141
3D_Ritz [17] 2.461 4.549 10.910 12.602 14.788 15.538 17.136

7 1 3.655 5.120 10.842 11.072 11.632 12.474 14.523
9 3.653 5.119 10.795 11.042 11.596 12.440 14.502
13 3.652 5.119 10.788 11.038 11.591 12.437 14.500
19 3.652 5.119 10.788 11.038 11.590 12.437 14.500
3D_Ritz [17] 3.652 5.119 10.784 11.036 11.587 12.433 14.496

7 2 1.438 2.213 6.087 7.196 11.313 12.000 13.091
9 1.437 2.218 6.085 7.193 11.246 11.965 13.063
13 1.437 2.218 6.084 7.193 11.237 11.961 13.059
19 1.437 2.218 6.084 7.193 11.236 11.961 13.059
3D_Ritz [17] 1.437 2.219 6.084 7.192 11.233 11.959 13.056

Ri=Ro ¼ 0:4; h=Ro ¼ 0:5; g ¼ 1; DT ¼ 0.

Table 4

Convergence and accuracy of the first non-dimensional natural frequency parameter ½omh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc=ðC11Þc

p
� of clamped FG annular plates.

Nr ¼ Nz m g

0 1 2 3 4 5

7 0 0.199 0.195 0.184 0.168 0.150 0.132
9 0.199 0.195 0.184 0.169 0.152 0.135
13 0.199 0.195 0.184 0.169 0.152 0.135
3D_Ritz [17] 0.199 0.195 0.184 0.169 0.152 0.135
3D [16] 0.200 0.196 0.185 0.170 0.153 0.136

7 1 0.362 0.356 0.338 0.312 0.282 0.252
9 0.362 0.356 0.338 0.313 0.285 0.257
13 0.362 0.356 0.338 0.313 0.285 0.258
3D_Ritz [17] 0.363 0.356 0.338 0.313 0.285 0.258
3D [16] 0.368 0.361 0.343 0.318 0.289 0.261

7 2 0.532 0.523 0.499 0.464 0.423 0.381
9 0.532 0.523 0.499 0.465 0.427 0.389
13 0.532 0.523 0.499 0.465 0.427 0.389
3D_Ritz [17] 0.532 0.523 0.499 0.465 0.427 0.389
3D [16] 0.528 0.519 0.495 0.465 0.423 0.386

h=Ro ¼ 0:3; DT ¼ 0.

Table 2

Convergence and accuracy of the first seven non-dimensional natural frequency parameters $i½¼ omih
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðC44Þm

p
� of clamped–clamped FG annular

plates.

Nr ¼ Nz m $1 $2 $3 $4 $5 $6 $7

7 0 8.177 13.912 15.516 19.446 20.108 21.720 22.552
9 8.201 13.875 15.511 19.481 20.158 21.888 22.615
13 8.209 13.870 15.511 19.485 20.164 21.885 22.615
19 8.210 13.870 15.511 19.486 20.165 21.885 22.615
3D_Ritz [17] 8.214 13.872 15.514 19.485 20.167 21.886 22.616

7 1 8.303 9.696 13.803 14.885 15.546 16.439 19.368
9 8.322 9.689 13.769 14.853 15.533 16.400 19.401
13 8.329 9.688 13.765 14.850 15.533 16.396 19.404
19 8.330 9.688 13.764 14.850 15.533 16.396 19.405
3D_Ritz [17] 8.333 9.689 13.766 14.850 15.535 16.397 19.404

7 2 8.849 11.160 13.842 15.638 16.561 17.684 19.326
9 8.861 11.147 13.814 15.615 16.548 17.628 19.365
13 8.865 11.145 13.810 15.614 16.549 17.623 19.368
19 8.866 11.144 13.810 15.614 16.549 17.623 19.369
3D_Ritz [17] 8.867 11.145 13.810 15.615 16.550 17.624 19.368

Ri=Ro ¼ 0:4; h=Ro ¼ 0:5; g ¼ 1; DT ¼ 0.
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Eliminating the boundary degrees of freedom from Eq. (45) using Eq. (46), the result reads

ðS �o2
mMÞD ¼ 0: (47)

where S ¼ Sdd � SdbS�1
bb Sbd.

Solving the eigenvalue system of Eq. (47), the natural frequencies and mode shapes of the plate will be obtained.

4. Numerical results

In this section, firstly, the fast rate of convergence and high accuracy of the method is investigated. Then, the effects of
the different geometrical parameters, the material parameters and the uniform and non-uniform temperature rise on the
Table 5
Convergence of the first three non-dimensional natural frequency parameters of FG annular plates subjected to non-uniform temperature rise.

Nr ¼ Nz m C–C F–C

l1 l2 l3 l1 l2 l3

7 0 54.718 126.756 176.049 10.619 62.735 98.532

9 54.533 125.433 175.967 9.249 65.523 96.607

13 54.449 125.275 175.873 12.735 59.769 99.586

15 54.433 125.248 175.856 12.691 59.839 99.522

17 54.424 125.233 175.846 12.673 59.860 99.497

19 54.419 125.224 175.841 12.666 59.866 99.487

FSDT 54.212 124.83 173.97 12.629 59.768 99.016

7 1 55.181 106.942 127.37 13.619 64.514 76.746

9 54.996 106.929 126.062 12.412 67.252 75.838

13 54.912 106.927 125.905 15.236 61.419 77.055

15 54.897 106.927 125.879 15.195 61.488 77.037

17 54.888 106.927 125.864 15.179 61.508 77.030

19 54.882 106.927 125.854 15.173 61.514 77.027

FSDT 54.677 107.19 125.45 15.157 61.433 76.869

7 2 56.709 121.239 129.244 20.591 69.622 83.801

9 56.526 121.216 127.979 19.616 71.617 82.153

13 56.445 121.207 127.825 21.553 66.254 84.646

15 56.430 121.205 127.800 21.517 66.319 84.600

17 56.421 121.204 127.785 21.504 66.337 84.582

19 56.416 121.204 127.776 21.499 66.343 84.574

FSDT 56.215 121.26 127.37 21.508 66.310 83.99

Ri=Ro ¼ 0:5; h=Ro ¼ 0:1; p ¼ 1; DT ¼ 800.

Table 6
Convergence of the first three non-dimensional natural frequency parameters of FG annular plates subjected to non-uniform temperature rise.

Nr ¼ Nz m C–C F–C

l1 l2 l3 l1 l2 l3

7 0 38.387 77.929 88.293 11.866 43.583 49.932

9 38.372 77.921 88.195 11.894 43.595 49.922

13 38.346 77.906 88.15 11.884 43.571 49.927

19 38.337 77.899 88.136 11.881 43.561 49.927

FSDT 38.149 77.182 86.990 11.837 43.427 49.545

7 1 38.697 53.451 78.419 13.803 38.563 44.614

9 38.683 53.445 78.41 13.816 38.559 44.608

13 38.658 53.444 78.396 13.806 38.560 44.583

19 38.649 53.444 78.389 13.803 38.560 44.573

FSDT 38.460 53.578 77.669 13.789 38.427 44.451

7 2 39.790 60.601 79.892 18.727 42.379 47.693

9 39.779 60.587 79.879 18.721 42.37 47.641

13 39.757 60.583 79.865 18.711 42.373 47.614

19 39.749 60.582 79.859 18.709 42.373 47.604

FSDT 39.555 60.609 79.132 18.734 41.977 47.511

Ri=Ro ¼ 0:5; h=Ro ¼ 0:2; p ¼ 1; DT ¼ 800.
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free vibration characteristics of FG circular and annular plates are presented. Otherwise specified, the material properties
vary according to power law distribution and the non-dimensional natural frequency parameters are defined as
li ¼ omiR

2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rch=D0c

p
, in which D0c ¼ E0ch3=12ð1� n2

0cÞ. Also, the shear correction factor for the FSDT is assumed to be
k ¼ 5=ð6� nÞ.

The material properties of Ti-6Al-4V and ZrO2, as given in Table 1, are used in the numerical computations, which are
chosen from the work of Kim [11]. They are valid for the temperature range of 300 KrTr1100 K.

As a first example, the convergence behavior and accuracy of the method for the first seven frequency parameters of
thick FG annular plates with two different set of boundary conditions are studied in Tables 2 and 3. The results are
compared with those of the three-dimensional elasticity solutions of Dong [17], which were obtained using the
Chebyshev–Ritz method. The results for FG annular plates with both the inner and the outer surface clamped (C–C) are
presented in Table 2 and for completely free FG annular plates (F–F) are given in Table 3. The material properties vary
exponentially. The results are presented for different values of circumferential wavenumber (m). One can see that for each
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Fig. 2. (a)–(b). Comparison of the first two frequency parameters of the FG annular plates with and without the temperature-dependent material

properties and subjected to non-uniform temperature rise ðh=Ro ¼ 0:3; Ri=Ro ¼ 0:5; p ¼ 2Þ: temperature independent,

temperature dependent, m m=0, K m=1, ’ m=2, m=3.
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value of the circumferential wavenumber (m), the frequency parameters can be obtained accurately using only seven DQ
grid points in each direction (r and z). Also, increasing the number of the grid points, the accuracy of the results increase
without any numerical instability. It is evident that in all cases the results are in excellent agreement with those of the 3D
elasticity theory.

As another example, the effect of the material property graded index ðgÞ on the convergence and accuracy of the first
frequency parameter of clamped FG annular plates (C–C) are studied in Table 4. For the purposes of comparison, the results
of the two other 3D approaches [16,17] are also cited. Again, the fast rate of convergence, numerical stability and accuracy
of the method are quit obvious.

Since there are no available results for FG plate subjected to thermal environment, to validate the presented 3D
approaches, the same problems are solved based on the FSDT. The convergence behavior of the presented 3D approach for
the first three frequency parameters of moderately thick FG annular plates subjected to non-uniform temperature rise are
presented in Tables 5 and 6. The results are calculated for two different values of the thickness-to-outer radius ratio and
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also two different set of boundary conditions. In all cases, good agreement between the results of the two approaches, i.e.
the 3D and the FSDT, are apparent.

After demonstrating the convergence and accuracy of the method, at this stage the effects of different parameters
on the non-dimensional natural frequencies of the FG annular plates subjected to thermal environment are
investigated.

In order to show the importance of considering the variation of material properties with temperature, the first two
frequency parameters of the FG annular plates with and without the temperature-dependent material properties subjected
to non-uniform temperature rise are compared in Figs. 2(a) and (b). The results are prepared for the different
circumferential wavenumber (m). From these figures one can see that the frequency parameters are greatly overes-
timated when the temperature-dependence of material parameters is not taken into account. The discrepancy
between temperature-dependent and temperature-independent solutions increase dramatically as the temperature rise
increases.
λ 1

ΔΤ

10

11

12

13

11

12

13

14

λ 1

ΔΤ

0 100 200 300 400 500 600 700 800

0 100 200 300 400 500 600 700 800

Fig. 4. The variation of the fundamental frequency parameters of the free-clamped FG annular plates against the temperature rise subjected to non-

uniform temperature rise ðh=Ro ¼ 0:3;Ri=Ro ¼ 0:5Þ: p=0, p=0, p=1, p=5, p=10: (a) m=0 and (b) m=1.
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Fig. 5. The variation of the secondary frequency parameters of the free-clamped FG annular plates against the temperature rise subjected to non-uniform
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The influence of uniform and non-uniform temperature rise on the first three frequency parameters of FG annular plates
are shown in Figs. 3(a) and (b). It can be seen that for the same value of temperature rise, the uniform temperature rise has
more effect than non-uniform temperature rise on the frequency parameters and increasing the temperature rise, the
discrepancy between the results of two cases increase dramatically.

The effects the non-uniform temperature rise on the first and the second frequency parameters of the FG annular plates
with free inner edge and clamped outer edge (F–C) are presented in Figs. 4–5 for different values of the power law index (p).
The results are shown for different values of the circumferential wavenumber (m). As obvious from these figures, increasing
the temperature rise causes the frequency parameter to decrease monotonically for all values of the circumferential
wavenumber (m).

In Table 7, the results for FG annular plates with two different values of inner-to-outer radius ratio, thickness-to-outer
radius ratio and also two different sets of boundary conditions are presented. The influence of geometrical parameters and
temperature rise on the first three non-dimensional natural frequency parameters of simply supported-clamped annular
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Table 7
The influence of geometrical parameters on the first three non-dimensional natural frequency parameters of annular FG plate subjected to non-uniform

temperature rise.

h=Ro Ri=Ro m C–C F–C

l1 l2 l3 l1 l2 l3

0.1 0.1 0 18.438 47.537 86.074 6.617 26.777 58.661

1 19.230 49.487 68.801 14.382 39.535 54.399

2 24.528 57.151 85.543 23.462 54.310 76.854

0.3 0 30.006 73.998 129.169 7.633 35.165 81.611

1 30.695 75.064 82.589 12.918 39.318 62.055

2 33.331 78.459 99.928 22.035 50.377 69.061

0.2 0.1 0 15.470 35.349 54.009 6.907 23.334 45.183

1 16.417 34.455 37.364 13.447 27.228 31.949

2 21.215 42.833 43.560 20.632 38.466 42.222

0.3 0 23.603 50.922 64.733 7.782 28.717 43.345

1 24.145 41.308 51.791 12.044 31.013 31.406

2 26.333 50.19 54.467 19.483 34.54 38.803

DT ¼ 800; p ¼ 1.

Table 8
The influence of geometrical parameters and temperature rise on the first three non-dimensional natural frequency parameters of simply supported-

clamped annular FG plate subjected to non-uniform temperature rise.

h=Ro Ri=Ro m DT ¼ 200 DT ¼ 800

l1 l2 l3 l1 l2 l3

0.1 0.1 0 17.754 48.106 89.629 15.667 43.293 81.439

1 19.698 51.608 72.191 17.258 46.436 66.958

2 27.348 62.330 91.046 24.081 56.177 84.433

0.3 0 26.183 72.734 93.470 23.551 66.240 86.735

1 27.715 74.455 87.385 24.874 67.794 81.072

2 32.600 79.641 102.03 29.175 72.491 94.677

0.2 0.1 0 15.357 37.150 53.397 13.964 34.028 49.568

1 17.090 36.159 39.815 15.504 33.538 36.460

2 23.195 45.590 47.277 21.076 42.278 43.320

0.3 0 21.918 46.862 52.905 20.055 43.488 48.705

1 23.074 43.748 50.371 21.098 40.586 46.680

2 26.741 51.103 57.429 24.431 47.423 52.855

p ¼ 1.
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FG plate subjected to non-uniform temperature rise are presented in Table 8. The plates are subjected to non-uniform
temperature rise.

The effects of the thickness-to-outer radius ratio on the frequency parameters of the clamped FG annular plates
subjected to the thermal environment and for the various inner-to-outer radius ratio are shown in Fig. 6. As one can see,
increasing the thickness-to-outer radius ratio causes the frequency parameters to decrease. This is due to definition of the
non-dimensional frequency parameters. But, it should be noted that the frequency omi increases by increasing this ratio.
Also, one can see that the frequency parameters can be highly nonlinear, when compared with the cases in other figures,
which represent the effects of other parameters.

The mode shapes of the FG annular plates with free inner edge and clamped outer edge (F–C) in thermal environment
are shown in Fig. 7. From Fig. 7, it can be seen that the displacement modes of the first frequency parameter are
axisymmetric and those of the other frequency parameters are asymmetric. It should be mentioned that increasing the
temperature rise or the power law index (p), the mode shapes have not significant changes in shape.
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Fig. 6. The influence of the thickness-to-outer radius ratio on the frequency parameters of the clamped FG annular plates ðDT ¼ 800 K; p ¼ 1Þ:

Ri=Ro ¼ 0:1, Ri=Ro ¼ 0:3, Ri=Ro ¼ 0:5, Ri=Ro ¼ 0:7: (a) m=0 and (b) m=1.
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5. Conclusion

The three-dimensional free vibration analysis of thick FG annular plates subjected to thermal environment is
presented. The material properties are assumed to be temperature dependent and graded in the thickness direction.
The initial thermal stresses are obtained by solving the equilibrium equations of the plate. Using Hamilton’s principle,
the equations of motion and the related boundary conditions subjected to initial thermal stresses are derived.
The differential quadrature method as an efficient and accurate numerical tool is used to solve the system of equilibrium
equations and equations of motion. Using the DQ method, allows one to deal with FG plates with an arbitrary
thickness distribution of material properties and also to implement the boundary conditions of the plate efficiently and in
an exact manner. The convergence behavior and accuracy of the method are investigated through the different solved
examples. The effects of the temperature rise, the geometrical parameters and the material graded index on the frequency
parameters are investigated. It is shown that the temperature-dependence of the material properties have significant
effects on the natural frequency parameters. Also, increasing the temperature rise, the natural frequencies decrease. It
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Fig. 7. The displacement modes of the free-clamped FG annular plates ðDT ¼ 800 K; Ri=Ro ¼ 0:1; h=Ro ¼ 0:3; p ¼ 1Þ: (a) m=0, the radial displacement (u),

(b) m=0, the transverse displacement (w), (c) m=1, the radial displacement (u), (d) m=1, the tangential displacement (v), (e) m=1, the transverse

displacement (w), (f) m=2, the radial displacement (u), (g) m=2, the tangential displacement (v) and (h) m=2, the transverse displacement (w).
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should be mentioned that increasing the temperature rise or the power law index (p), the mode shapes have no significant
changes in shape. The new tabulated results can be used as benchmark for other numerical methods and also the refined
plate theories.
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